2022.11.22/ホテルニュータナカ(山口市)+オンライン 山口大学グリーン社会推進研究会 第2回シンポジウム・基調講演

カーボンニュートラルと山口県

橘川 武郎(きっかわ たけお) 国際大学副学長・大学院国際経営学研究科教授 東京大学・一橋大学名誉教授 総合資源エネルギー調査会基本政策分科会委員 kikkawa09@gmail.com

新しい風景:カーボンニュートラル

- ■2020.10.26菅首相所信表明演説「2050カーボンニュートラル」 ←20.10.13JERA「2050ゼロエミッション」byアンモニア・水素
- ■2021.4.22菅首相、 気候サミットで「2030GHG13年比46%削減」表明
 - → NDC(Nationally Determined Contribution)
 「2030GHG(Greenhouse Gas), 13年比26%削減」を大幅上方修正
- ■2050年の電源構成【参考値】(2020.12.21)
 - * 再生可能エネルギー: 50~60%
 - * 水素・アンモニア火力: 10%
 - * 水素・アンモニア以外のカーボンフリー(CCUS付き)火力+原子力:30~40%⇒実質は原子力10%(副次電源化)

CCUS=Carbon dioxide Capture, Utilization and Storage 二酸化炭素回収利用・貯留

カーボンニュートラルへの道

- ■電力:ゼロエミッション電源
 - * 再生可能エネルギー、原子力
 - *カーボンフリー火力(水素、アンモニア、CCUS)
- ■非電力:熱利用など
 - * 電化(EV[電気自動車])

[総電力需要1.3~1.5兆kWh 電化率38%]

- *水素(水素還元製鉄、FCV[燃料電池車])
- *メタネーション(e-gas)、合成液体燃料(e-fuel)
- *バイオマス
- ■炭素除去:最終的なCO2発生分をオフセット
 - *植林
 - * DACCS (Direct Air Capture
 - + Carbon dioxide Capture and Storage)

発電コスト(2050年)

- ■RITE(Research Institute of Innovation Technology for the Earth) 2021.5.13
 - *シナリオ/<u>電源構成再エネ・原子力・水素/アンモニア・CCUS火力)</u> /総発電力量/発電コスト(限界費用)
 - ①参考値=ベース/54%・10%・13%・23%/1.35兆kWh/24.9円/kWh
 - ②再エネ100%/100%・0%・0%・0%/1.05兆kWh/53.4円/kWh
 - ③再エネコスト低減/63%・10%・2%・25%/1.5兆kWh/22.4円/kWh
 - ④原子力活用/53%-20%-4%-23%/1.35兆kWh/24.1円/kWh
 - ⑤水素・アンモニアコスト低減
 - ⑥CCUS增大/44% 10% 10% 35%/1.35兆kWh/22.7円/kWh
 - ⑦カーシェア/<u>51% 10% 15% 24%</u>/1.35兆kWh/24.6円/kWh
- ■いずれのシナリオでも、
 - *2050年の発電コストは現行(13円/kWh)を大きく上回る。

コスト削減が最大の課題

- ■カーボンニュートラルの実現はエネルギーコスト上昇を伴う ⇒コスト削減こそが最大の課題=イノベーションがカギ
- ■イノベーションとともに既存インフラの徹底的活用がカギ
 - *カーボンニュートラルへの日本的な道
 - ・アンモニア: 既存石炭火力の活用
 - ・メタネーション: 既存ガス管の活用
 - *アジア諸国、新興国への展開が可能 非OECD諸国のカーボンニュートラル化の鍵握る 日本のリーダーシップの根拠となりうる
- ■バイオマスの活用も重要
 - * Sorghum、ブラックペレットへの注目

水素をめぐる留意点

- ■水素とアンモニアはビジネス的には別物
 - *アンモニア:電力業
 - *水素:電力以外のエネルギー産業、自動車産業、鉄鋼業
- ■非電力(50年62%)のカーボンニュートラルの主役は水素
 - * メタネーション、e-fuel、プロパネーション、水素還元製鉄、FCVトラック
- ■水素の本格的社会実装は2030年代以降
 - *30年電源ミックスでは、アンモニアと合わせ1%で貢献度低い。

アンモニア・水素・メタネーションの壁

■アンモニア:技術の壁&調達の壁

現状: 国内100万トン、発電だけで30年300万トン、50年3000万トン

現状:世界2億トン(ブルーアンモニアは北米から)

石炭火力だけでなくナフサクラッカーの熱源として使われる可能性も

NOXの制御、ハーバーボッシュ法を超えるアンモニア合成法

■水素:需要の壁

大口需要の水素発電にメドが立たない 電力業界はアンモニア集中で早くても30年代以降 高温ガス炉によるカーボンフリー水素の国産化

■メタネーション:技術の壁=需要の壁

欧州ガス業界の水素志向(需要減退を想定、導管事業中心) 都市ガス業界:メタネーションが間に合わなくなるおそれ 一方で鉄鋼・セメント・部品メーカー等でのメタネーションへの期待の高まり 外部水素の調達を必要としない次世代メタネーション オンサイトメタネーション

カーボンニュートラルへの道(再掲)

- ■電力:ゼロエミッション電源
 - * 再生可能エネルギー、原子力
 - *カーボンフリー火力(水素、アンモニア、CCUS)
- ■非電力:熱利用など
 - * 電化(EV[電気自動車])

[総電力需要1.3~1.5兆kWh 電化率38%]

- *水素(水素還元製鉄、FCV[燃料電池車])
- *メタネーション(e-gas)、合成液体燃料(e-fuel)
- *バイオマス
- ■炭素除去:最終的なCO2発生分をオフセット
 - *植林
 - * DACCS (Direct Air Capture
 - + Carbon dioxide Capture and Storage)

3つの落とし穴

- ■(1)需要からのアプローチに欠ける
- ■(2)セクターカップリングの視点に欠ける
 - *「電力」と「非電力」の分離
 →CHP(Combined Heat and Power, 熱電併給)の観点の欠落
- ■(3)「地域」の重要性に目を向けていない
 - *このままだと担い手は大企業に限定される
 - *中小企業も「サプライチェーン全体の脱炭素化」に迫られる

再生可能エネルギーのコストダウン

- ■太陽光/風力+蓄電池/バックアップ火力は高コスト but......
 - * Power to Heat = セクターカップリング
 - デンマークでの経験
 - ・再生エネ(風力/バイオ)+CHP(熱電併給)+地域熱供給
 - 電気が足りない時は電気、余る時は熱を生産。
 - 熱で温水を作り、貯める。
 - 温水パイプラインの敷設が条件
 - * 地域熱供給事業の面的拡大
 - 大都市⇒中都市
 - -都市⇒農村
 - 再生可能エネルギーの主力電源化⇒主力エネルギー源化

需要サイドからのアプローチ

■ゼロカーボンシティ

- * 2022.9.30時点で785自治体:43都道府県、459市、20特別区、224町、39村
- *カバー人口:1億1896万人
- * 意思表明するも、大半は具体的施策を模索中
- ■コミュニティベースのカーボンニュートラル挑戦のポイント
 - * 熱電併給
 - *コミュニティによるエネルギー選択
 - * VPP(Virtual Power Plant, 仮想発電所) 創電+蓄電+節電のネットワークとアグリゲーター
 - *地方都市ガス事業者、LPガス事業者、SS運営者への期待

山口県への期待

- 口水素
 - *4大都市圏以外で初の水素ステーション
 - *副生水素の活用(CCSとの結合)
 - *IGCC(石炭ガス化複合発電):水素リッチガス火力、上関?
- ロ 燃料アンモニア
 - *カーボンニュートラルポート=徳山下松港の全国拠点化
 - * 周南コンビナートでのグリーンイノベーション基金プロジェクト
 - *石炭火力+ナフサクラッカー+焼成キルン
- ロ バイオマス
 - *地元産バイオマス活用への取組み
- □ CCU
 - * メタノール2オレフィンの知見